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I .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  SER. 2 ,  VOL. 2.  P R I N T E D  I N  G R E A T  B R I T A I N  

Stability of conserving approximations and second-order 
phase transitions in interacting Fermi systems 

G. MORANDIT 
Department of Physics, Imperial College 
MS. received 1 s t  April 1969 

Abstract. The equivalence between the thermodynamic stability condition that the 
free energy be a local minimum and the requirement that the correlation functions 
show no zero-frequency poles is proved for a general class of conserving approxima- 
tions to many-fermion problems. Previous stability treatments are rederived as 
particular cases of the general theorem, and some applications are developed. The 
consequences of the theorem are briefly discussed. 

1. Introduction 
The problem of the thermodynamic stability of an interacting many-fermion system is 

usually attacked from two different points of view. The  first one is a purely statistical- 
mechanical approach, in which one starts with a given Hamiltonian or a given effective 
Hamiltonian and builds up the partition function and the free energy, requiring then the 
latter to be a (at least relative) minimum. This approach has the advantage of being 
mathematically very straightforward, once a good mathematical characterization of the 
Hamiltonian has been given; in particular, it allows one to establish a number of very 
elegant and useful properties, such as minimum principles and absolute lower bounds for 
any approximation to the free energy (see, e.g., Huber 1967). Its disadvantage is that it is 
almost never possible to define a clear-cut effective Hamiltonian corresponding to a given 
approximation, except for the very simple ones. On the other hand, the Green function 
approach allows one to develop a whole class of approximations which are much more useful 
in actual descriptions of a Fermi system; the stability problem comes out in this formalism 
as the requirement that certain correlation functions (and the susceptibilities that can be 
deduced from them) develop no complex poles corresponding to collective modes of the 
system growing exponentially in time. The  onset of instabilities is usually said to be at the 
point where such functions develop a zero-frequency pole. Examples of this kind are the 
well-known Stoner criterion for itinerant ferromagnetism (Stoner 1938) and the t-matrix 
approach to the Cooper instability (Schrieffer 1964). From a conservative point of view the 
request of no complex or zero-frequency poles appears rather as a requirement that the 
perturbation expansion for the relevant physical response functions be well behaved and 
convergent, so that we can end up with results displaying the correct analytical properties. 
There is no general clear-cut connection of this with the requirement that the free energy be 
a minimum. Such a connection, as far as we know, has been established only in two cases, 
namely in the Hartree-Fock approximation (Thouless 1960, Mermin 1963) and for the 
Landau-Fermi liquid theory (Pomeranchuk 1958). Both suffer from limitations, the former 
being restricted to the simplest approximation of the many-body approach, the latter being 
limited to the region of temperatures and momenta where the Landau theory is valid. It is 
the purpose of this paper to show how this connection can be established, in the form of a 
strict equivalence, holding for a general class of Green function approximations (the so- 
called ‘conserving’ approximations, which include the exact theory). We shall derive the 
stability condition by analysing the second variation of the free energy, considered as a 
functional of the Green function, around the value of the latter representing the normal- 
state solution (e.g. for an interacting electron gas this will be the (fully interacting) uniform 
paramagnetic state) when the Green function itself, or the sei€-energy, undergoes a small 
variation. 

t On leave from Istituto Nazionale di Fisica Nucleare, Bologna, Italy. 
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As a typical such variation we could consider, for example, the off-diagonal components 
of the Nambu matrix Green function in the theory of superconductivity (Nambu 1960, 
Schrieffer 1964) or the anomalous Green functions (off-diagonal in both momentum and 
spin) which must be introduced to treat the spin density wave itinerant antiferromagnet 
(Celli and Morandi 1967). 

The  theory is not limited to any particular example; the only assumption is that such 
‘anomalous’ Green functions behave continuously and are zero in the normal phase. We 
then essentially restrict ourselves to second-order phase transitions, which are characterized 
by the continuous growing up of an order parameter (intimately connected with the 
anomalous Green functions) from zero in the normal phase to a finite value. Two kinds of 
techniques can be used : the perturbation-theoretic one, making use of Feynman’s diagrams, 
and the (in principle, non-perturbative) functional derivative technique of Baym and Kadan- 
off (Baym and Kadanoff 1962). The  latter can be given, step by step, a diagrammatic 
interpretation (which is perhaps more intuitively clear), We choose to use this second kind 
of technique; the diagrammatic approach is used either to illustrate the basic equations, or 
to prove some simple property, when the proof turns out to be shorter and simpler. 

In  $ 2 we summarize the basic theory to be used throughout the paper; the stability 
criterion is established in 4 3 and the connection with the zero-frequency behaviour of the 
correlation functions is established in Q 4. Section 5 is devoted to rederiving the Mermin- 
Thouless theorem as a particular case and to some simple applications. In  $ 6  we state the 
conclusions. The  appendix contains the proof of a relation which is of use in the text. 

2. Conserving approximations in the many-fermion problem 
In  this section we briefly summarize the basic formal apparatus to be used throughout 

the paper. All the results we shall establish (or simply state) can be found in the literature 
(mainly in the papers of Baym and Kadanoff (1961, 1962) and Baym (1962)) and are col- 
lected heze only to establish the notation and some minor conventions. 

Let N o  be the full Hamiltonian (kinetic plus potential energy) of the system and p the 
chemical potential; we find it convenient to employ, as a time-development operator, 

A = A0-@ (2.1) 

(19 being the particle number operator) instead of Ho. The one-particle Green function is 
defined as 

I 

where 16, $+ are Heisenberg wave-field operators, 1, 1’ stand for coordinate, time and spin 
iridices, the times are assumed to run on the interval (0, -ip) (Baym and Kadanoff 1962), 
(...) means a statistical average (in the grand canonical ensemble, i.e. the canonical 
ensemble of H )  and T i s  the usual Dyson time-ordering operator (which orders with respect 
to the real variables it,, itlt). If we assume that an external non-local potential U(1, 2) is 
acting on the system, G can be written, in the ‘interaction’ representation in which H is the 
zero-order Hamiltonian, as 

where 

S = Texp( - i s  d(1) d(2)$+(l)U(l,2)$(2)) 

and S d(i) stands for Spin J d3r, SiiB dt,. In  both cases G satisfies the boundary condition 

G(l,l’)ltl=o = -G(l,l’)ltl= - i B .  (2.5) 
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The Dyson equation for G in the presence of U is 

G-l( l , l ’ )  = Go-’(1,l’)- U(1,l’)- 2 (1,l’) 

where h( 1) is the one-particle part (kinetic energy plus, eventually, a one-body potential) of 
H ,  and X the proper self-energy. A knowledge of G as a functional of U allows one to 
determine the tmo-particle Green function G2(l, 1’; 2, 2’) as 

G2(l,2;l‘2’) = {?‘{#(1)#(2)#+(2‘)4~~(1‘)}) = - 6G(171’) I +G(l,l’)G(2,2‘), 

(2-7) 
SU(2’,2) 7J=o 

G itself can be determined from a knowledge of the functional (Baym 1962) 

2 = Sp{exp( -PH)T[S])  (2.8) 
which is the appropriate generalization to our case of the well-known expression for the 
partition function. If we set 

W =  - 1 n Z  (2.8’) 
G is given by 

6 CV 
G(1,l’) = 

6 U(1’) 1)’ 

TV can, in turn, be expressed as a functional of G and U (Baym 1962, Luttinger and Ward 
1860, see also Noziitres 1964): 

W = 0 - Tr{( Go -l- U)G - 1) + T r  In ( - G) (2.10) 

where the functional 0 has the property that 

6 0  

6 G( 1 ’ ,1) 
= 2 (l , l / ) .  

Products like UG are to be understood as 

( UG) ( 1,2) = d( 3) U( 1 ,3) G( 3,2) s 
and 

T r  A = d ( l ) A ( l , l + )  s 

(2.1 1) 

(2.12) 

(1 +. (v, , t ,  + 0)) .  W has the property of being stationary with respect to G;  in fact by 
setting 6WjSG = 0 we simply reproduce Dyson’s equation. Equation (2.9) is easily derived 
from (2.10); owing to the stationarity property, we need only to vary W with respect to its 
explicit dependence on Uappearing in the term T r  UG, which immediately leads to (2.9). An 
explicit diagrammatic expression for CD can be given if we analyse into skeleton diagrams 
(i.e. diagrams from which all the diagonal self-energy insertions have been removed and full 
propagators replace the bare ones). Let (itself a functional of G and U )  be the sum of all 
such diagrams containing n vertices; then (Noziitres 1964) 

(2.13) 

These are the more relevant features of the exact theory. Needless to say it satisfies all the 
physically important conservation laws (particle number, energy, momentum, angular 
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momentum). The  elegance of this formulation is in the fact that (Baym 1962) all the conser- 
vation laws follow from them being satisfied at each vertex (microscopic conservation) and 
from the single property of the self-energy of being the variational derivative of a functional 
of the exact G. 

T o  be conserving (i.e. to satisfy the conservation laws) is a requirement to be imposed on 
every physically meaningful approximation. Equations (2.1) to (2.12) define a whole class 
of conserving approximations, each one being uniquely defined by giving an explicit expres- 
sion for the functional @, which in turn uniquely defines W and C. Through (2.6) and 
(2.7) the one- and two-particle fully conserving Green functions can be calculated; at the 
end of the calculation U can be set equal to zero and then W gives the approximation to the 
grand potential consistent with the given Green functions. I t  is this class of conserving 
(or ‘@-derivable’ (Baym 1962)) approximations we are interested in. Examples of conserv- 
ing approximations, including the well-known ones (Hartree and Hartree-Fock, random 
phase approximation, etc.) are given in the literature quoted in this section and will not be 
reproduced here. 

A property of conserving approximations which is of great use and which we shall need 
later is that they preserve all the thermodynamic relations that arise from varying a para- 
meter in the grand potential (Baym 1962). The  stationarity property of W, which allows us 
to vary only with respect to its explicit dependence on such a parameter, is of great use in 
performing the calculation. One such relation which is easily deduced from (2.10) is the 
thermodynamic relation 

( W = -In 2) which gives 

I 1 ( .g) = - T r  G = - i d3rG(r t ; r t+)  
P 

(2.14) 

(2.15) 

consistent with the usual definition of (iv}. 

the vertex part. If we define (Baym and Kadanoff 1961) 
A last formula which will be useful later connects the variation of the self-energy i\+h 

SG(2’,1’) 
r(1,1’;2,27 = (2.16) 

it is easy to convince oneself that r is just the irreducible particle-hole vertex part of the 
standard many-body perturbation theory. 

3. The stability criterion 
In  all that follows we only assume that a well-defined functional @ exists and satisfies 

(2.1 1) ; our conclusions hold then for any conserving approximation. 
Let us suppose the programme sketched in the previous section has been pushed to the 

end and U set equal to zero. We are then describing thermal equilibrium, and S2 = p-lw, 
from (2.10), is a definite approximation to the grand potential S2. By varying around one of 
its stationary points (the one we have chosen to represent the Green function) given by 
Dyson’s equation, we obtain (the first variation being zero)t 

8 2 @  i S2R = - T r  SG Tr-- SG‘ -(G-lSG)* 
2P ( SGSG‘ 

the first term being a shorthand notation for 

aG(1’2’) d(1) d(2) d(1’) d(2’). I SG(1’2)8G(1,2)SG(1’,2’) 
7 After deriving equation (3.1) we found that it already existed in the literature (Baym 1962). 



Stability of conserring approximations 49 1 

I t  is better to express 6G in terms of a self-energy variation as 

and 
6G = -GGG-‘G 

6G-1 = a(G0-l- C ) = - 8 2 .  

If we denote the self-energy variation SE by A, we have 

(3.3) 

(3 -4) 

(3.5) 

Let us choose an orthonormal basis (cp,(r)) of single-particle states. In  this basis the one- 
particle Green function can be defined as 

Gij(tl,t1’) = 1 d3r, d3rl’yi*(rl)G(l,l’)pj(rl’) (3.6) 

and a similar representation can be given to the self-energy. 

(Baym and Kadanoff 1962) 
For a system at equilibrium Gt i  depends only on 7 = tl-ttl’; its Fourier expansion is 

Gtj(.) = 2 exp( -- ix,t)Gij(x,) 
P v  

- ib 
dT exp(ixyT)Gij(T) 

0 

(3.7) 

and x, is restricted to the values x, = ( 2 v +  1)ri//3, v = 0, 
boundary condition (2.5). Moreover, Gij(x,) has the spectral representation 

1, 5 2, ..., owing to the 

dw A,j( U )  

- n  2T x , - w  
G,,(x,) = -----. 

If we start from (3.8), Gij  can be analytically continued to all complex x (Baym and Kadanoff 
1962). 

The  spectral density is given by 

A i j ( w )  = Gij>(w)+Gij<(w) (3 *9> 
G,,5(w) being the Fourier transforms of the correlation functions ( $ ~ ~ ( t ) $ ~ +  ) and ($j+$i(t)) 
respectively (with real t).  The boundary condition (2.5) is equivalent to 

Gij’(w) = eBWGij<(w). (3.10) 

From the representation (3.6) applied to Gtj3(tl, tl’) it is clear that for real times 

whence 
(3.11) 

(3 12) 

and hence Aii  will obey the hermiticity condition 
Aij(U) = A j i * ( L 0 ) .  (3.13) 

T h e  same must be true for C, the more general form of which is 

(3.14) 

T h e  static part usually arises as a result of a Hartree-Fock-like calculation (whence 
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the suffix HF). The  above hermiticity condition will hold for y and we must also have 
XEF = (C:”)*. T o  avoid specifying separately the two conditions, we state them in the 
equivalent form 

(3.15) * C i j  (z,) = Xji( -x,). 

The self-energy variation h can be as general as possible as far as the dependence on the 
space and spin coordinates is concerned. We again require time-translational invariance, 
so that 

(3.16) 

The irreducible vertex part I’(ll’, 22’) can be transformed in a similar way; let us 

A(1, 2) = A(r,, r,;  t,-t,) 
and Arj(z,) will obey the same hermiticity requirement (3.15) as C and G. 

define 

r ( l l ’ ,  22’) = - 2 exp{i(z , , t~+~, ,~t ,~-zvl t , -xvl~t , ’ )}  ia2 v 1  ... 1’2’ 
x 2 (i~zjrh ... vz ’ ) i j l ) .  

Iikl 

4 t  equilibrium I‘ will depend only on three independent times; we define then 

1 
<ikjryv, ...vz’)jjz) = - sv1+ \ , : , ,  v2+va.(ik/r(v,v‘;~)jjz) (3.17) P 

where 

R, is then a ‘Bose-like’ (integral multiple of Z.rri/P) frequency. Expressed in perturbation 
theoretic language, (ikII’(v, v’; p)ljZ) is the sum of all the irreducible (in the particle-hole 
channel) connected diagrams having the structure shown in figure 1. 

In this representation PR can be written as 

1 
a2Q = - 2 CA,,( - z,) (4P Ik%,, XVO Jsy >A&,,) (3.18) 

2P2 p q r s  vv’ 

/ @ 
/ 

\ 

Figure 1. Graphical representation of 
(3.17). Here the four external lines are 

indicated for clarity. 

Figure 2. Graphical representation of 
(3.18). Double full lines represent full 

G’s . 
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where the matrix is defined as 

( q ~ / * ( x v ,  xv,)Isr) = 2 Gjp(-xy)Gqi(-zv) <ih lp( -v>v‘;  o>Ijl,G,,(xv,)GrI2(xy’>+ 
i lk1 

- P S v ,  --Y’Gqs( -zv)Grp( -xv)* (3.19) 

Let us set x, = ip ,  x,, = ip’ and indicate the frequency dependence simply by the 
A graphical representation of (3.18) is given in figure 2. 

indices p, p’. By using the hermiticity property (3.15), (3.18) can be rewritten as 

1 
= 7 z: c A,P*(p)(qpl~uu,ISr)ASI(p’). (3.20) 

2P uu’ p q r s  

We shall prove that 2 has the following properties: 

(4P I P L  ‘sr ) = (SF F U , U  14P >* 
(qp l$i,,. :ST ) = ( p q  IX- 11, - U‘  I rs )* 

(3.21a) 
(inversion symmetry). (3 2 1 b )  

IfAm7e consider X as a matrix in the two groups of indices (ppp) and (srp’)) (3.21a) states 
that X is Hermitian in the canonical sense of matrix theory. A diagrammatic proof of 
(3 .21~)  and (3.21b) is given in the appendix. As anticipated we shall exploit there the 
connection between the functional-derivative and the diagrammatic approaches. T h e  
proof could also be given by relying only on the former (i.e. exploiting the property of r of 
being a second functional derivative) ; tbe diagrammatic proof is, however, considerably 
simpler, Equation (3.21~)  proves that, X being Hermitian, S2Q is (as it should be) mani- 
festly real for an arbitrary A satisfying the hermiticity constraint. T o  ensure that the 
solution of the thermal equilibrium problem represents a true stable equilibrium state (or 
at least a differentially stable one) we require that 

s z c n  > 0. (3.22) 

%quation (3.21b) allows us to relax the Hermitian constraint imposed on A, for if we suppose 
X has an eigenvector of the form (3.14) (but without any Hermitian constraint), apq(p)  
with a non-positive eigenvalue X ( A  cannot, in any case, be complex owing to (3.21a)), then 
we shall have 

I A  (heunit icity) 
A 

A 

(3 23 )  

Using (3.21b) we also have 

1 
- 2 (qp I % L U ’ S Y  >%,*( - p’) = X g p q * (  - P )  (3.23’) 

but then every linear combination of aqp(p)  and xpq*(  -p )  is a solution of (3.23). By taking 
now 

P sru‘ 

4 P ( P )  = % P ( P )  + MP,*( -E*.)  
or 

A,&) = i{%P(P) - %*( - P)) 
which cannot be simultaneously zero, we can satisfy (3.15), but (3.22) would be violated. 

(3 24) 

Let us also note that, from the form of (3.20), we can define a bilinear form 

(3 2 5 )  

between any two ‘vectors’ a,  ,d of the given structure, and this has all the properties of a 
scalar product, The  linear space spanned by the dcps(p)’s has then the correct metric 
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properties to enable us (taking for granted that expres$ons like (3.20) and (3.25) are con- 
vergent) to treat it as a Hilbert space and to consider X as a Hermitian operator on it. 

We conclude then that f o r  a given conserving approximation to, lead to a (differentially) 
stable thermal equilibrium solution, the Hermitian matrix (qp  ]Xuul Isr ) must be positi-ie 
deJnite. This is the stability theorem we shall employ in the next sections. 

To work with discrete imaginary frequencies has proved to be very useful in establishing 
the formal properties of S2i2 and hence the stability criterion. At this stage and for practical 
purposes, we are obviously free to continue analytically, using the standard procedures, both 
h and F into the complex plane of frequencies and to replace the sums with integrals in 
which the temperature dependence is explicitly exhibited in the integrands. This has 
obviously to be done if one wants to evaluate s2i2 for a given approximation. 

4. Collective modes versus stability 
We define the two-particle correlation function L( 1,2; 1’2’) as 

sG(1, 1’) 
L(1,2; l’, 2’) = - 

SU(Z’, 2)’ 
Using the relationship between G, G-l and the chain rule of functional differentiation 

we can generate the Bethe-Salpeter equation for L :  
L(22’, 11’) = -G(2’, 1)G(2, 1’) 

+/  d(T) ... d(Z)G(T, 1)G(2, Z)r(z Z’,TT‘)L(T’2‘, 2’ 1’). (4.3) 

In  the basis we are using, L has a representation similar to F. In that basis (4.3) becomes, 
after Fourier transforming, 

< I L(y,v’ , m) I$) = - Pa,, L‘GkI(XV +) G&” -) 

+- 2 2 G ~ ~ ( ~ ~ + ) G ~ ~ ( X ~ - )  (qplr(v,v”; m ) ~ s r >  ( Y ~ / L ( ~ ’ ’ , ~ ’ ;  m)lpz)  
1 

P v” P i l l 3  

(4.4) is graphically represented in figure 3. 

Figure 3. 

k ,  v / t  

i , v +  /, v -  

/ >  U +  / , U -  

Bethe-Salpeter equation for L. L is represented by a shaded square with four 
external lines. 
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In the particle-hole channel R is the (complex) total energy of the particle-hole pair 
(which is conserved during the interaction). L can then be used to build up the response 
function of the system to an external probe varying in time with frequency am; the physical 
response function is obtained by analytically continuing to all complex Q and taking the 
limit as Q tends to the real axis from above. The poles of L in the variable Q give then the 
frequencies of the collective modes of the system. 

We are interested here in the static limit (Q, = 0) of the response function, We again 
find it more useful not to perform the analytical continuation with respect to z,,, zv,. If we 
define then, in the static limit, 

(iklL(v,v’, 0 ) l j l )  = (ikiLpj6,1jZ) (4.5) 

we have for Lppj  the equation 

( i k l L p p , p )  = -P~,,’GIcj(PL)GIl(P) 
1 + p  2 2 Gs,(P)G2s(P)(qplrU1L”ISr) < f , ~ l ~ p , , p , l P O  (4.6) 

li” p u s  

If we invert the relation (3.19) between2 and I? we obtain 

<ik ~ r p p ,  ~ j l >  = c Gpj-l(P)Gtq-l(P) <qPiz-,;,p, I ~ Y  )Gsl-l(p’)Gkr-l(pf) 
p u i s  

+P%p,Gil-l(P)Gk, - l (P ) .  (4.7) 
If we define further 

(srl&p,lvt) = 2 Gsi-l(p)Gjr-l(p) ( ~ ~ ~ L p - ~ ’ ~ ~ Z ) G ~ k - l ( - ~ ’ ) G ~ ~ - l (  -11.’) (4*8) 
2 3 k l  

(4.6) turns out to be equivalent to 
1 
- 2 2 ( q ~ I ~ p j I S r ) ( S r l ~ i r i c ‘ I v t )  = P % l i 4 P S , b  (4.9) P E  s r  

i.e. to the statement that A is the inverse matrix of X ,  in the sense the word ‘matrix’ has been 
used in the previous section. 

Let us suppose now that L has a pole at Q = 0. The residue in the pole is a solution of 
the homogeneous equation associated with (4.6) ; it can be represented(N0zikres 1964, p. 249) 
as 

(4.10) 

At the same point fi will also have a pole, and 

h A 

Res (ikl  Lpp!ljZ) = Uij(p)Uk&’). 

Res < P 4 j A , , , W )  = o ! P 4 ( P ) Q h k t  - P ’ )  (4.11) 

and x will be a solution of 

(4.12) 

If o! # 0, the stability condition is manifestly violated by (4.12). We then conclude that for  
a given conserving approximation to lead to a stable thermodynamic equilibrium state, no correla- 
tion .function must have poles at zero frequency (with a non-trivial residue). 

If instead we are in a situation in which only a weaker stability condition holds, i.e. 
2i2R 2 OT, the h which makes S2i2 vanish must be a solution of (4.12)’ as for this the 
Hermitian form (3.20) assumes its minimum value. 

Going back to the original definitions, we find that (4.12) is identical with 

(4.13) 

t This can be thought of as the situation corresponding to the onset of a given instability, 
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i.e. the homogeneous Bethe_Salpeter equation for L at R = 0. L in turn can be expressed 
in terms of the full vertex I’ which is the solution of a Bethe-Salpeter equation similar to 
(4.3): 

~ ( i i ’ ,  22’) = q i v ,  227+  j’d(i) ... d(Z’)r( i i ,  ~z)G(z ,T’)G(z’ ,T)~(T’ ,  i t ,  z’, 2’), 
(4.14) 

In  terms of f ,  L is given by 

L( ll’, 22’) = - G( 1’2)G( 12’) + d(T) , .. d(Z’)G( lT)G(Z2)F(YT’, ZZ’)G(2’2’)G(l’T’) 
(4.15) 

(it can be checked that (4.15) is the solution of (4.3)) with f given by (4.14)l. Equation 
(4.13) is then also equivalent to the homogeneous Bethe-Salpeter equation for I?. The latter 
is the usual starting point for the analysis of the onset of instabilities in the normal phase. 
We have then shown how it comes out from, and is equivalent to, the failure of the normal- 
state solution to give a relative minimum of the free energy. 

A couple of brief comments should be added at this point. The above statements can be 
somewhat disturbing at first sight, in so far as everybody can produce plenty of examples of 
collective modes of many-fermion systems whose frequency continuously vanishes when 
some parameter (in general the momentum of the mode) tends to zero without any conse- 
quences at all for the stability. This is the case, for example, for the zero and first-sound 
modes in a fermion system with short-range repulsive interaction. Let us fix our attention 
on this case (i.e. R = Q(q) and lim Q(q) = 0); then it can be easily verified (cf. Nozihes 

and Pines 1966) that the residue in the pole of the appropriate response function valzishes 
when q -+ 0 (i.e. this is a trivial case of (4.12) which by no means affects the stability), 
although the same response function is perfectly regular if, as we did in deriving the above 
theorem, weJLirst set Q = 0 and then let the other parameters vary. 

We argue that this must be true also in more general cases. This is also another way of 
stating the well-known fact that a response function is a highly singular function of its space- 
time (or momentum-frequency) arguments and that (4.12) represents a well-defined pre- 
scription for taking the static limit, which is by no means the same as picking up a pole at 
some finite R and following it until it vanishes. 

A result completely analogous to that of $9 3 and 4 has already been derived, as mentioned 
in 5 1, within the framework of the Landau-Fermi liquid theory (Pomeranchuk 1958, see also 
Nozi6res and Pines 1966) and is known as Pomeranchuk’s stability criterion. It has been 
shown (Nyberg 1968) how Pomeranchuk’s criterion can be recovered starting from the 
homogeneous Bethe-Salpeter equation for the vertex part. As our treatment also leads to the 
same equation, the results we have established become equivalent, when the appropriate 
limits are taken ( T  -+ 0, momentum and frequency of any external probe much less than the 
Fermi momentum and chemical potential), to those of Pomeranchuk, of which they are the 
generalization to arbitrary temperatures (and momenta). They are yet more general in 
another sense, in so far as the kind of variation of the self-energy we consider has no restric- 
tions coming from, say, particle-number conservation or other selection rules which instead 
affect the derivation of Pomeranchuk’s criterion (Nyberg 1968). This will be shown more 
explicitly in the next section. 

J 

q+o 

5.  Some simple applications 
5.1. Rederivation of the Thouless-MePmin theorem 

The connection between collective behaviour and thermodynamic stability has already 
been established limited to the Hartree-Fock approximation. It takes a more general form 
than our result, in so far as it states that thermodynamic stability requires the equations of 
the random phase approximation (i.e. the approximation for L consistent with the Hartree- 
Fock approximation for the grand potential) to have no complex poles; it is then not limited 
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t o  the static case. The theorem has been established by Thouless (1960) at zero temperature 
and generalized by Mermin (1963) to T # 0. I t  can be deduced from the general formula- 
tion of § 3 in the following way. 

Let us restrict A to being of the Hartree-Fock type (cf. (3.14)) and take the basis of 
single-particle states which are solutions of the Hartree-Fock equation ; then 

Moreover, as in the Hartree-Fock approximation 

d(1) d(2)(G(l,lf)G(2, 2+)-G(2, l + ) G ( l ,  2 + ) ) V ( ~ , - ~ ~ ) 8 ( t ~ - t ~ + ) .  
(5.2) 

We find after a few simple manipulations that r is frequency-independent and given by 

( j n i r l i m )  = ( jn1VIim)-  ( j n l V ( m i )  (5.3) 
where 

(5.4) 

T h e  sums over frequencies involve only G factors and can be done. The  final result is 

wheref, = f(gi), f being the Fermi function. 
The position (leading essentially back from a self-energy to a Green function variation) 

immediately reduces ( 5 . 5 )  to equation (2.22) of hlermin (1963) (see also Celli and Mermin 
(1965) where (5.6) was first introduced). Equation (5.5), together with (4.4) written 
in the random phase approximation, is what is needed to prove the theorem. 

The reason why, in the Hartree-Fock approximation, the conclusions are not restricted 
to the zero-frequency behaviour of the correlation functions can easily be traced to the vertex 
part being completely frequency-independent in this case; the limitations imposed on the 
time dependence of A are then unimportant, and the collective behaviour can be studied 
without limitations. -4s a consequence of (5.5) it has been proved (Mermin 1963) that a 
stable Hartree-Fock approximation fulfills the thermodynamic inequality (Landau and 
Lifshitz 1958) 

8P 
- > 0. (5.7) 
8P 

A statement equivalent to (5.7) is 

( ; ) B  > 0. (5 -8) 

Let us use for the time being the symbols d/dp for the total derivative with respect to p 
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and 2/zp for the derivative with respect to the explicit dependence on p. Hence, as 

d SQdG an 
-Q = Tr-- + -  
dP SGdp ap 

(which reduces to (2.14) at equilibrium), we have 

(5.9) 

(5.10) 

But 

8Qdd2G dG S2Q dG‘ 6 d G )  8% 
+-Tr’- - +-- -- +-. (5.11) - = Tr\---.- d2Q 

dP2 \ 6 G d p 2  d p  6G6G’dp 6G ap dp 8p2 

As, in any case, 
an -- - - T r G  + 

we then have at equilibrium 

But 
s an 

- - 1  
SG 8p 

and hence 

Tr’-- 
d N  1 dG (TIeq = j T r ( F  

(5.12) 

(5.13) 

( 5  -14) 

(5.15) 

which proves that a stable thermal equilibrium solution cannot violate the thermodynamic 
inequality (5.8) (compare (5.15) with (3.1)). This result too is found to be true for any 
conserving approximation and not limited to the Hartree-Fock approximation. If we take 
the T + 0 limit of (5.13), (5 .8)  becomes identical with the first of Pomeranchuk’s conditions, 
i.e. 1 + F ,  > 0 (see Nozikres and Pines (1966) for the meaning of the symbols). 

5.2. Cooper instability 
In  order to treat the superconducting instability we must generalize slightly the formalism 

used up to now. Let us recall that superconductivity is best described by using Nambu’s 
formalism (Nambu 1960, Schrieffer 1964), in which the self-energy is a 2 x 2 matrix 

2 (P, Z,) = Z,U -Q, %)I + x ( P ,  2 , 1 7 3  + d ( P ,  .,).I (5.16) 

( T ~ ,  T~ are the usual Pauli matrices) and G and X are related by Dyson’s equation (a matrix 
equation now) with 

(5.17) 

4 is the order parameter, to be determined self-consistently, and 4 = 0 corresponds to the 
normal state. I n  this case G is given by 

GO -’@, X,) = Z, - gPT3. 

(5.18) 

Going back to § 2, let us assume that the indices i , j ,  . .. correspond now to the matrix indices 
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of Nambu, and take for a translationally invariant system 
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A*dzv> = 4 ( P ,  xv>(~1>/3. .  (5.19) 

Products such as GAG (cf. ( 3 . 5 ) ) ,  where G is chosen to represent the normal-state solution 
(5.18), become then 

(5.20) 
(5.21) 

The  second variational derivative of 4 appearing in (5.22) must be understood as being 
taken in the presence of the appropriate external source field (which will couple in this case 
with ++ (1) ++(2) and +(1) +(2) and is then the generalization appropriate to the present case 
of U in $2). Then, if we set U = 0, the result must be Fourier transformed with respect 
to the time variables and taken at s1, = 0 (and also, as we have specialized to a transla- 
tionally invariant case and A is diagonal as far as momentum is concerned, the result will 
depend only on two independent momenta). Before setting U = 0, the expression within 
square brackets in (5.22) is (we do not indicate explicitly the space-time variables in order 
not to lengthen the formulae) 

Figure 4. Graphical illustration of (5.23). 

and contains diagrams of the four types displayed in figure 4. It is clear that, when C -+ 0, 
only diagrams (a) and (b)  (i.e. diagrams with equal numbers of particles entering and leaving) 
are left; as ( a )  and (b)  only differ by an interchange of (p ,u)  with ( p ’ , ~ ’ ) ,  which is unimportant 
owing to the symmetry of (5.22), it is clear that the final outcome of this (only formally complex) 
operation is just the particle-particle irreducible vertex for two particles with zero total 
energy and momentum. This is what we needed, as it is just an instability in the particle- 
particle channel of the vertex part which leads to the superconducting transition (Schrieffer 
1964). 

Then let r (pp’ ;  zvx,,) be the vertex; (5.22) becomes 

with 
A 

x ( p p t ,  z,ZV.) = ~ ( p ,  -.)r(pp’; - v ,  v t p ( p ’ ,  - S ~ , , . B S - ~ , , ~ ~ ,  -.I. (5.25) 
The  proof given of the basic properties (3.21) can be extended without difficulty to the 
present case; hence the discussion of the preceding section can be taken up (with only minor 
changes). In  particular (4.13) now becomes equivalent to the homogeneous Bethe-Salpeter 
equation for the particle-particle vertex at zero total energy-momentum of the particle pair. 
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The temperature at which it first has a non-trivial solution is the superconducting transition 
temperature, and is identical with the temperature at which first becomes zero (i.e. the 
temperature at  which the normal state and the superconducting state with an infinitesimal 
amplitude of the gap parameter have the same free energy). Had we started from below T, 
(4.13) would give the limiting value of the gap equation as T -+ T,. 

We have studied in detail the superconducting instability only in order to show how 
general the method developed in $5 3 and 4 can be, Other types of instabilities could be 
devised (e.g. the Overhauser spin density wave instability (Celli and lJIermin 1965, Celli 
e t  al. 1966, Celli and Morandi 1967), but the study proceeds essentially along the same lines 
and would not then be especially illuminating. We refer for them to the literature (see, 
mainly, illattuck and Johansson 1968). 

6. Concluding remarks 
The two approaches to the instability problem, the dynamical approach looking at the 

appearance of zero-frequency poles in the appropriate correlation functions (or, equivalently, 
in the corresponding vertex parts) and the statistical-mechanical approach, where in- 
stabilities appear as a failure of a given approximation to the free energy to be a local mini- 
mum, have been found to be completely equivalent; this gives a general justification to the 
way many-body theorists look at the onset of instabilities. Apart from the possibility of 
trivial examples, the solutions of (4.13) (which are, as we saw, connected with the onset of 
such instabilities) are always, loosely speaking, off-diagonal in some quantum numbers with 
respect to which the normal solution is diagonal (particle number in the case of Cooper’s 
instability, spin and momentum in the case of Overhauser’s spin density waves, etc.). We 
(eventually) found that the temperature at which these non-trivial solutions begin to exist 
is the transition temperature towards a new phase, characterized by some order parameter 
which is intimately connected with the solution of (4.13) (again, referring to the above 
examples, the order parameter is ($xf+ $-K&+ } for a superconductor, ($K+Q,t+ $ K ~ )  in the 
spin density wave case, and so on). The  structure of the solution then immediately gives a 
hint on how to treat the system below the transition temperature. What we have to do is 
just to introduce additional Green functions corresponding to the new non-vanishing 
expectation values (the ‘anomalous’ Green function of Gor’kov and Nambu in the theory of 
superconductivity) and to re-adapt the theoretical scheme of $ 2 to this new situation. T h e  
formal extension of the equations of $ 2  to the more general case in which the Green function 
is a matrix (with off-diagonal elements corresponding to the ‘anomalous’ functions) is easy 
and without special problems. This technique is well known in the case of superconductivity; 
it has been also applied to the spin density wave problem (Celli and hlorandi 1967). A 
general review of it has been given by Mattuck and Johansson (1968) from the diagrammatic 
point of view. 

Having in mind some definite phase transition, one could start from the very beginning 
with the above formalism, obtain self-consistent equations for the anomalous Green 
function and determine the transition temperature (or equivalently, at fixed temperature, the 
critical interaction strength) as the temperature at which their solution vanishes. This is the 
point of view of Mattuck and Johansson (1968). It has been shown by the same authors that, 
at the critical point, the equation for the anomalous part of the self-energy reduces to the 
homogeneous Bethe-Salpeter equation for the vertex part taken in the appropriate channel, 
which is also our result. The two points of view, the latter and that of the present paper, 
then just complement each other: our approach (which considers the problem, so to speak, 
from the normal side, or from above the critical point) goes smoothly, as the critical 
point is crossed, into the renormalized theory developed by Mattuck and Johansson; the 
two approaches together give, we believe, a fairly complete analysis of the possible second- 
order phase transitions in a Fermi system. 

Appendix. Properties of the irreducible vertex part at zero total energy 
Using (3.19) it can immediately be checked that (3.21a) and (3.21b) are true provided 
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and 

(ikl  Filii. I j l )  = (jllr - 

(ik 1 ruu. l j z )  = ( ~ i l  rUzu 1 zj). 

lik )* 
Using (Al),  (A2) can be reduced to 

(Al) and (A3) are graphically represented in figure 5. 

I , u l  j.-v i ,-v 
/ 

Figure 5 .  Graphical representation of equations (Al) and (A3). 

That the two diagrams of (A3) are equal is immediately evident : the right-hand side of 
the graphical equation just corresponds to a rotation of the left-hand side around its centre; 
the two are topologically the same diagram. As to (41), let us suppose we analyse the 
diagrams into skeletons ; the only change to the standard rules of finite temperature pertur- 
bation theory is that to each line in a diagram we must associate a dressed propagator 
GIJ(zY) (and to GiJ we associate a line running f romj  to i )  instead of a bare one (Abrikosov et 
al. 1963). From these rules and the hermiticity condition on G, we see that complex con- 
jugation just changes the sign of the four external frequency variables (the internal ones are 
also changed, but they are dummy indices) and inverts the direction of each propagator 
line, ilfter these operations have been performed, it is then also proved that every diagram on 
the right-hand side of (Al) turns into a diagram contributing to the left-hand side of (Al). 
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